Deblurring Face Images with Exemplars

نویسندگان

  • Jin-shan Pan
  • Zhe Hu
  • Zhixun Su
  • Ming-Hsuan Yang
چکیده

The human face is one of the most interesting subjects involved in numerous applications. Significant progress has been made towards the image deblurring problem, however, existing generic deblurring methods are not able to achieve satisfying results on blurry face images. The success of the state-of-the-art image deblurring methods stems mainly from implicit or explicit restoration of salient edges for kernel estimation. When there is not much texture in the blurry image (e.g., face images), existing methods are less effective as only few edges can be used for kernel estimation. Moreover, recent methods are usually jeopardized by selecting ambiguous edges, which are imaged from the same edge of the object after blur, for kernel estimation due to local edge selection strategies. In this paper, we address these problems of deblurring face images by exploiting facial structures. We propose a maximum a posteriori (MAP) deblurring algorithm based on an exemplar dataset, without using the coarse-to-fine strategy or ad-hoc edge selections. Extensive evaluations against state-of-the-art methods demonstrate the effectiveness of the proposed algorithm for deblurring face images. We also show the extendability of our method to other specific deblurring tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Face Image Deblurring via Robust Face Salient Landmark Detection

Recent years have witnessed great progress in image deblurring. However, as an important application case, the deblurring of face images has not been well studied. Most existing face deblurring methods rely on exemplar set construction and candidate matching, which not only cost much computation time but also are vulnerable to possible complex or exaggerated face variations. To address the afor...

متن کامل

Deblurring traffic sign images based on exemplars

Motion blur appearing in traffic sign images may lead to poor recognition results, and therefore it is of great significance to study how to deblur the images. In this paper, a novel method for deblurring traffic sign is proposed based on exemplars and several related approaches are also made. First, an exemplar dataset construction method is proposed based on multiple-size partition strategy t...

متن کامل

Deep Semantic Face Deblurring

In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and mouths), the semantic information of a face provides a strong prior for restoration. As such, we propose to incorporate global semantic priors as in...

متن کامل

ASIE: Application Specific Image Enhancement for Face Recognition

In this paper, we propose a novel method to enhance low quality images. Specifically, we focus on facial images. Low quality images are often degraded by motion artifacts, sensor limitations, and noise contamination leading to loss of higher order information that is essential for face recognition. First, we demonstrate that conventional denoising and deblurring methods are not able to fully re...

متن کامل

DeepDeblur: Fast one-step blurry face images restoration

We propose a very fast and effective one-step restoring method for blurry face images. In the last decades, many blind deblurring algorithms have been proposed to restore latent sharp images. However, these algorithms run slowly because of involving two steps: kernel estimation and following non-blind deconvolution or latent image estimation. Also they cannot handle face images in small size. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014